Raman O VI Spectroscopy and Polarimetry of Asymm etric Accretion Flows in Symbiotic Stars

Hee-Won Lee

In Collaboration with Jeong-Eun Heo, Seok-Jun Chang, Young-Min Lee
R. Angeloni, F. Di Mille, T. Palma

Sejong University

2016 December 5

Contents

1. Introduction - Symbiotic stars
2. Atomic Physics
3. Flux Raios (Y.-M. Lee)
4. Raman He II (S.-J. Chang)
5. Profile Analysis (J.-E. Lee)
6. Polarization (Future project)
7. Discussion

INTRODUCTION - PROGENITORS OF TYPE IA SUPERNOVAE?

1. Accelerated expansion using Type Ia supernovae
2. Accretion onto a white dwarf from a mass losing companion.
3. Reaching the Chandrasekhar limit, a supernova explosion takes place.
4. Cataclysmic variable vs. Symbiotic stars

Kepler SN, HST

Introduction - Symbiotic stars

1. Spectra characterized by a hot component, a cool component and various emission lines.
2. The cool component is a mass losing giant.
3. The hot component is usually
4. Various activities can be attributed to wind accretion.
5. OVI 1032 and 1038 are very strong.
6. Classified into 'S' and 'D' type symbiotic stars.
7. S type symbiotics show orbital periods ranging in several hundred days, whereas D type symbiotics may exceed a decade.

Southern Crab (Corradi, HST)

V1016 Cyg

Introduction- Wind Accretion in Symbiotic stars

1. The mass losing giant shed material in the form of a slow stellar wind.
2. Some fraction of the slow stellar wind is accreted to the white dwarf.
3. Bipolar outflows may accompany the accretion disk around the white dwarf.
4. Bipolar nebular morphology appears common. Rodolfo Angeloni discovered a huge jet in Sanduleak's star.
5. Do we have a good observational tool to diagnose these activities?
\rightarrow Yes, we do!!!

. $\begin{aligned} & \text { Sanduleak's star } \\ & \text { (R. Angelnoni) }\end{aligned}$

Raman scattering in Symbiotic stars
 Letter to the Editor

1. Broad emission features at 6825 and 7082 with wavelength range of 20-30 Angstrom.
2. Schmid (1989) proposed that they are O VI 1032 and 1038 inelastically scattered by atomic hydrogen.
3. An invaluable spectroscopic and polarimetric tool to study the mass loss and mass transfer processes in symbiotic stars.

Identification of the emission bands at $\lambda 26830,7088$
H. M. Sctmium

Received Novernber 22, uecepted Devember 20, 1988
Summary. Broad errission bands at 6 830 A and 7088 A $\mathrm{T}_{\mathrm{p}} \mathrm{p}$ to now these fatures have nut been identified. They have only been abserved in spectra of symbiotic binaries, whicl show ligh excitation emission and .M-type absorp)
tion. I suggest that the emission features are due to Ranuan srotituxink of the OVI resonanace doublet $\lambda \lambda 1032$, 1038 by neatral hydrogen. In this prucess the OVI plioTons s.re absorbed by lydrogen in its. grounch stink 1, 1th

 hut emitted photons have wavelengths of arppoximintely
6830 A and 7083 A . Raman scattering can well explain the olserved propectics of the emission bands. Physical conditions requiretl for eflicicint Ramant scattering of O
photons in symbiotic stars will be loriclly discussed.

 otics slowing iNeV] aud [FFVIT] linss. Thus the $i 6833$
 In this letter the emission features 16830 and $\lambda 7085$

2. Raman scattering A basic ireariment of the ilhory for light scanttering from
a atrom can be found in Louton (1983). Raman scat-

 schematically the scattering path of OV1 $\lambda \lambda$ L139, 1038
on neutral hydrogen. The incident photon ν_{3} excites hy-

RAMAN SCATTPRING OF O VI BY HII

1. A far UV photon is incident on a H I atom in the ground state.
2. During the interaction, the hydrogen atom is excited to one of infinitely many p states.
3. It can finally de-excite to either ls state (Rayleigh scattering) or 2s state (Raman scattering)
4. The probability of scattering into 2 s is about $1 / 6$ smaller than that of scattering into ls.
```
Examples of Raman Scattering
Ly \beta 1025 >- Hi\alpha 6563
O VI 1032 }->682
O VI 1038 - 7082
    h}\mp@subsup{\boldsymbol{v}}{\boldsymbol{i}}{=h}\boldsymbol{h}\mp@subsup{\boldsymbol{v}}{\boldsymbol{o}}{}+\boldsymbol{h}\mp@subsup{\boldsymbol{v}}{\boldsymbol{\alpha}}{
```


SCATTERING CROSS SECTION (AROUND LYB)

$2^{\text {nd }}$ Order Time Dependent Perturbation Theory-Kramers-Heisenberg Formula

Rayleigh Scattering

$$
\left(\frac{d \sigma}{d \Omega}\right)_{R a y}=r_{0}^{2}\left|\frac{1}{m \hbar} \sum_{I}\left(\frac{\omega\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha^{\prime}}\right)_{A I}\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha}\right)_{I A}}{\omega_{I A}\left(\omega_{I A}-\omega\right)}-\frac{\omega\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha}\right)_{A I}\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha^{\prime}}\right)_{I A}}{\omega_{I A}\left(\omega_{I A}+\omega\right)}\right)\right|^{2}
$$

Raman Scattering

$$
\left(\frac{d \sigma}{d \Omega}\right)_{R a m}=r_{0}^{2}\left|\frac{1}{m \hbar} \sum_{I}\left(\frac{\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha^{\prime}}\right)_{A I}\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha}\right)_{I A}}{\omega_{I A}-\omega^{\prime}}-\frac{\left(\boldsymbol{p} \cdot \varepsilon^{\alpha}\right)_{A I}\left(\boldsymbol{p} \cdot \boldsymbol{\varepsilon}^{\alpha^{\prime}}\right)_{I A}}{\omega_{I A}+\omega^{\prime}}\right)\right|^{2}
$$

$$
\sigma \approx 10^{-22} \mathrm{~cm}^{2} \text { for } 0 \mathrm{VI}
$$

1. Raman scattering operates in the presence of a thick neutral component in the vicinity of a strong far UV emission source.
2. HI is provided by the Giant and OVI by the white dwarf.

Raman 6825 is stronger than 7082 by a factor of about 6.
Two factors are involved. One is the cross section, and the other is the flux ratio of resonance doublets.

MONTE CARLO STMULATION OF RAMAN SCATTERING (Y.-M. LDE

Roughly one out of 5 scatterings of OVI 1032 with a hydrogen atom results in an emission of Raman OVI 6825 photon.

- Roughly one out of 3 scatterings for OVI 1038 into 7082.
(Significant difference in branching ratio as well as cross section)
- HI region is optically thick with respect to far UV but transparent to optical radiation.
- An O VI line photon keeps its identity as a far UV photon as long as it Rayleigh scatters with a hydrogen atom.
- An O VI line photon executes approximately 6 random walk steps before it takes a new identity as an optical photon redward of H alpha.
- An optical photon leaves the HI region without further interaction to reach us.

Geometry

Set the Geometrical Parameters

$$
N_{H I}=n_{H I} d
$$

$N_{H I}$: Column density (cm^{-2})
$n_{H I}$: Number density (cm^{-3})
d : Physical distance (cm)
$\lambda_{\text {max }}, \lambda_{\text {min }}:$ Maximum and minimum wavelength
f_{λ} :The number of input photons

Monte Carlo Appoach of Radiative Transfer

What fraction of OVI 1032 photons will be converted to Raman OVI at 6825? And what about OVI 1038 into Raman OVI 7082?

- The answer depends on the scattering geomtetry and content of HI.
- If the OVI source is fully embedded and there is sufficient amount of HI, then full Raman conversion is expected.
- If there is only small amount of HI atoms, single scattering processes dominate.

FLUX RATIOS AND COLUMN DENSITY

- Therefore as N_HI goes to infinity, Raman flux ratio of 6825 and 7082 approaches unity assuming that F1032/F1038 = 1 .
- In the opposite limt of N_HI goes to 0, Raman conversion rate will be just the probability that a scattering takes place. (Perfect single scattering approximation). This is the product of total cross section times the branching ratio. OVI 1032 has three times higher probability of being converted to an optical photon than OVI 1038.

CFHT OBSERVATIONS OF HIM SGD AND AG DRA

S type symbiotics exhibit larger flux ratios of F6825/F1082 than D type symbiotic stars.

In S type symbiotics, the binary separation is smaller than in D type symbiotics. The HI region is much thicker in S symbiotics than in D symbiotics.

D type HM Sge

Y.-M. Lee et al. (2017)

FURTHER EXAMPLES OF RAMAN SCATTERING (S.-J. CHANG)

- He II emits many far UV lines.
- $2 \mathrm{n}(\mathrm{n}>1) \rightarrow 2$ transitions of He II mimics HI Lyman transitions. (Bohr atom or singleelectron atom)
- He II $4 \rightarrow 2$ transition results in 1216 , slighltly blueward of HI Ly alpha 1216.
- He II $6 \rightarrow 2$ gives 1025 and Raman scattered to form 6545 feature. \rightarrow Sekeras \& Skopal (2015)
- Highly useful to put constraints on the mass loss rate of the giant component in symbiotic stars.

IONIZATION STRUCTURE

Taylor and Seaquist 1984
X is a photoionization parameter that relates the mass loss rate and ionizing luminosity.

$$
X=\frac{4 \pi \mu^{2} m_{p}^{2}}{\alpha} a L_{p h}\left(v_{\infty} / \dot{M}\right)^{2}
$$

$$
\mathbf{v}_{H}(\mathbf{r})=v_{\infty}\left(1-R_{*} / r\right)^{\beta} \hat{\mathbf{r}}
$$

RAMAN SCATTERING OF HE II

- Seok-Jun Chang is comparing the Raman conversion efficiencies of He II $10 \rightarrow 2$ (949), He II $8 \rightarrow 2$ (972) and He II $6 \rightarrow 2$ (1025) in their formation of Raman features at 6545,4850 and 4330 blueward of H alpha, H beta and H gamma.

Raman 4332 feature in V1016 Cyg (Lee 2012)

PROFILE FORMATION OF RAMAN OVI IN SYMBIOTICS (J.-E. HBO)

- O VI emission region may be mainly identified with the accretion flow around the white dwarf.
- The accretion flow tends to be convergent or
the entrance side whereas it is divergent on the opposite side.
- More O VI photons are generated on the convergent side than on the opposite side, resulting in red-enhance Raman profiles.

SPH simulation by Mastrodemos and Morris (1998)

Raman OVI profiles harbor intricate information about accretion flow around the white dwarf.

(viia) RR Tel ceazs

PROFILE BROADENING OF RAMAN SCATTERED FEATURES

- $h v_{i}=h v_{o}+h v_{\alpha} \rightarrow v_{i}=v_{o}+v_{\alpha}$
- $\Delta v_{i}=\Delta v_{o}$
- $\frac{\Delta v_{i}}{v_{i}}=\frac{\Delta v_{o}}{v_{i}}=\frac{v_{o}}{v_{i}} \frac{\Delta v_{o}}{v_{o}}$
- This relation implies that the Raman scattered features will be
 broadened by the factor $\lambda_{0} / \lambda_{i}$
- In the case of Raman 6825 , this factor is almost 6 , resulting in a very broad emission feature.
- The Raman profile reflects the relative kinematics between the neutral region and far UV emission region and is totally irrelevant to the observer's line of sight.
- Nature installed a wonderful mirror in front of the giant to provide an edge-on view of the accretion flow and a lateral view of the collimated outflow.
- (Jeong-Eun Heo's Work)

PROFILE BROADPNING - HOW CAN WE UNDERSTAND IT?

- Imagine an observer who is receding from an OVI emitter with a speed slightly less than speed of light.
- This observer measures the wavelength of OVI with a huge redshift z.
- For example if $z=5$, then the measured wavelength would be 1032 X ($1+5$) = 7192.
- For this observer, the O VI emitter appears to move very slowly by a factor of $(1+z)$ because of cosmic time dilation.
- Raman scattering provides a similar wavelength stretch by a factor ~ 6. This is like we are observing an early universe of redshift $\mathrm{z} \sim 5$.
- Compared to the speed of light, if the internal motion of O VI emission region is negligible, then the observed wavelength is mostly independently of the observer's line of sight.

UV SPECTRA OF SYMBIOTICS

Atomic structure of Li-like Ions
C IV 1548, $1551 \AA$
NV 1238, $1243 \AA$
O VI 1032, $1038 \AA$
In the optically thick medium, the doublet flux ratio approaches unity.

Profile Analysis

Adopting an accretion disk model, we may explain a double peak profile

- Accretion disk has a physical dimension of ~ 1 AU. $\cdot T h e ~ v e l o c i t y ~ s c a l e ~ i s ~ 30-50 ~ k m / s . ~$

PROFILE COMPARISONS OF 6825 AND 7082 (JEONG-EUN'S TALK)

- Symbiotic Star V1016
- The flux ratio should be in the range of $1: 1$ and $2: 1$.
- We plot the two profiles in the Doppler factor space with the normalization of equal red peaks.
- Deficit of the blue part of the 7082 feature is conspicuous.
- What is this implying?

Spectropolarimetry of the Symbiotic Nova RR Tel around 6825 and 7082

Polarization of transveres waves

1. Transverse waves can be polarized in two directions perpendicular to the direction of propagation.
2. One can generate polarized waves by oscillating the source in the specific direction.
3. Natural light is usually unpolarized.
4. Artificial light like LCD or scattered light can be strongly polarized.

Linear polarization

- If we watch an unpolarized light source, no brightness changes occurs when we rotate the polarization filter.
- For a polarized source, the brightness changes when we observe it using polarization filters.

POLARIZED LCD LIGHT

1. NPMATIC MOLECULAR STRUCTURE!

2. HUMAN EYE DOESN'T DISCERN POLARIZED LIGHT FROM UNPOLARIZED LIGHT. 3. IMAGE CAN BE FORMIDD BY APPLYING A SMALL BLDCTRIC FIDLD TO SPECIFIC PIXBLS THAT DELINPATE THE IMAGD.

Polarization of scattered radiation

1. Scattered light is usually significantly polarized.
2. A unique plane can be chosen if we are given two vectors. In a scattering event, the scattering plane is naturally defined by the wavevectors for incident and outgoing radiation.
3. Because of the transverse nature, oscillation in the direction perpendicular to the scattering plane is favored.

The red wing part is perpendicularly polarized with respect to the main double peak part!!!

POLARIZDㅓ RAMAN OVI IN SYMBIOTICS

1. Red wing part is polarized in the direction perpendicular to that of polarization of main part.
2. Polarization develops in the direction perpendicular to the scattering plane. 3. We need two scattering planes in order to explain the polarization of the main part and red wing part.
3. In additional OVI or III regiof in the direction perpendicular to the oftitalplane moving away from the two stafig\%

MODPLING OF POLARIZED RAMAN OVI

1. Asymmetric accretion flow + bipolar structure
2. OVI emission from a bipolar outflow?
3. Or additional HI regions receding in the bipolar direction?
4. Required conditions :
a) HI region subtends a substantial solid angle with respect to the O VI emission region.
b) Relative recession speed appears to be in the range $\sim 50-100 \mathrm{~km} / \mathrm{s}$

SPECTROPOLARIMETRY OF SYMBIOTICS

1. Harries \& Howarth (1996), H. M. Schmid
2. Double or Triple Peaks related to accretion and jet.
3. 7082 features are more strongly polarized than 6825.
4. S type symbiotics show stronger polarization than D types.
5. Polarization position angle varies according to the binary orbital motion \rightarrow Works well for S type symbiotics, but noisy or poor with D type symbiotics

AN ILLUSTRATPD BXAMPLD M1-21

1.Triple peak structure in total flux and polarized flux for the 6825 feature.
2. Less well-discerned due to poor quality for the 7082 feature.
3. Strongest polarization appears in the blue peak.

4. Center peak appears to be contributed from the convergent side of the accretion flow and bipolar component.
5. Opposing polarizations cancel each other weakening polarization. Red wing part exhbits flipped polarization.

CONCLUDING REMARKS

Raman O VI reveals tremendous amount of information regarding the accretion flow and bipolar outflows.
Should search more objects exhibiting Raman OVI features. Narrow band filter survey may give us new objects waiting to tell us fascinating stories of the cosmos. (Concalves, Akras)+(Angeloni, Heo, Chang)

