Properties of the wind outflow from the cool components in symbiotic binaries

Natalia Shagatova, Augustin Skopal

Astronomical Institute, Slovak Academy of Sciences Tatranská Lomnica, Slovakia

Mass-loss mechanism

S-type systems

D-type systems

Mira-star

\leftarrow red giant \rightarrow

Mass-loss mechanism

S-type systems

\leftarrow red giant \rightarrow

D-type systems

- Mira-star -

radiative acceleration of dust grains

Höfner 2015, ASP Conf. Ser. 497, 333

Mass-loss mechanism

S-type systems

Höfner 2015, ASP Conf. Ser. 497, 333

Velocity profile of the wind

- canonical β-law

- steeper v(r) for cooler stars

Decin et al. 2015, *A&A 574*, A5

v(r) for red giants in symbiotic binaries

- obtaining H⁰ column densities from **Rayleigh scattering**

- obtaining H^o column densities from Rayleigh scattering

- obtaining H^o column densities from Rayleigh scattering

- obtaining H^o column densities from Rayleigh scattering

- obtaining H^o column densities from Rayleigh scattering

Comparison of resulting models

- more precise velocity profiles of the wind

 $\tilde{n}_{\rm H}(b) = \frac{n_1}{b} + \frac{n_K}{b^K}$ - formula for the total hydrogen column density

object	i	E/I ¹⁾	$n_1[10^{23}]$	n _K	K	ξ	$X^{\mathrm{H}+}$	$\chi^2_{\rm red}$	model
EG And	70°	Е	4.54	5.12×10^{30}	21	6.40×10^{7}	1.75	1.67	Ι
	80°	E	3.87	1.15×10^{27}	14	1.38×10^{4}	1.85	1.60	J
	90°	E	3.40	4.83×10^{25}	10	5.49×10^{2}	1.88	1.63	Κ
SY Mus	80°	E	8.00	1.50×10^{27}	9	8.94×10^{3}	2.30	1.02	L
	84°	E	6.20	5.30×10^{26}	8	2.94×10^{3}	2.50	0.94	Μ
	90°	E	6.10	5.00×10^{26}	8	2.82×10^{3}	2.53	1.39	Ν
	84°	Ι	2.45	1.00×10^{27}	13	1.81×10^{4}	16.0	2.33	Ο

Notes: ¹⁾ E – egress data, I – ingress data

Object	i	$\dot{M}_{\rm sp}$ [M_{\odot} yr ⁻¹]	model
EG And	70°	2.11×10^{-6}	Ι
	80°	1.80×10^{-6}	J
	90°	1.58×10^{-6}	Κ
SY Mus	80°	4.26×10^{-6}	L
	84°	3.30×10^{-6}	Μ
	90°	3.24×10^{-6}	Ν
	84°	1.30×10^{-6}	0

Object	i	$\dot{M}_{\rm sp} \left[M_{\odot} {\rm yr}^{-1} \right]$	model	
EG And	70°	2.11×10^{-6}	Ι	
	80°	1.80×10^{-6}	J	
	90°	1.58×10^{-6}	Κ	
SY Mus	80°	4.26×10^{-6}	L	
	84°	3.30×10^{-6}	Μ	
	90°	3.24×10^{-6}	Ν	
	84°	1.30×10^{-6}	0	

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from <u>line-of-sight</u> <u>independent</u> methods $\approx 10^{-7} M_{\odot}$ /year

> Seaquist et al. 1993, *ApJ* 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, *A&A* 440, 995

<u></u>				
Object	i	$\dot{M}_{\rm sp} \left[M_{\odot} {\rm yr}^{-1} \right]$	model	
EG And	70°	2.11×10^{-6}	Ι	
	80°	1.80×10^{-6}	J	
	90°	1.58×10^{-6}	K	
SY Mus	80°	4.26×10^{-6}	L	
	84°	3.30×10^{-6}	Μ	
	90°	3.24×10^{-6}	Ν	
	84°	1.30×10^{-6}	0	

plane of observations ≈ orbital plane for eclipsing binary systems <u>Mass-loss rate</u> for giants in S-type symbiotic systems from <u>line-of-sight</u> independent methods $\approx 10^{-7} M_{\odot}$ /year

Seaquist et al. 1993, *ApJ* 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, *A*&A 440, 995

1 <u></u>				8	
Object	i	$\dot{M}_{\rm sp} \left[M_{\odot} {\rm yr}^{-1} \right]$	model		
EG And	70°	2.11×10^{-6}	Ι		
	80°	1.80×10^{-6}	J		
	90°	1.58×10^{-6}	Κ		
SY Mus	80°	4.26×10^{-6}	L		
	84°	3.30×10^{-6}	Μ		
	90°	3.24×10^{-6}	Ν		
	84°	1.30×10^{-6}	0		

<u>Mass-loss rate</u> for giants in S-type symbiotic systems from <u>line-of-sight</u> <u>independent</u> methods $\approx 10^{-7} M_{\odot}$ /year

> Seaquist et al. 1993, *ApJ* 410, 260 Mikołajewska et al. 2002, Adv. Space Res. 30, 2045 Skopal 2005, *A*&A 440, 995

plane of observations ≈ orbital plane for eclipsing binary systems Indication of the wind focusing towards orbital plane

Orbital inclination of Z Andromedae

Asymmetric light curves of symbiotic stars

- i = 84°
- white dwarf + red giant
- asymmetry in UV light curves

- white dwarf + red giant

- asymmetry in UV light curves

Dumm et al. (1999), A&A 349, 169: asymmetric wind distribution - possible cause of the asymmetry in LCs

Can we justify it in a quantitative way?

1.4

Model with unified velocity profile

Assumption: gradual change of the velocity profile from $v_e(r)$ to $v_{in}(r)$.

- interconnection by a smooth function

Model with unified velocity profile

UV continuum light curves modelling

Sources of radiation:

$$F_{\lambda}(\varphi) = F_{\lambda}^{\rm h}(\varphi) + F_{\lambda}^{\rm n}(\varphi)$$

WHITE DWARF $F_{\lambda}^{\rm h}(\varphi) = \pi B_{\lambda}(T_{\rm h})e^{-\tau_{\lambda}(\varphi)}$

NEBULA

 $F_{\lambda}^{n}(\varphi) = \alpha_{\lambda} \sin[2\pi(\varphi - 0.25)] + \beta_{\lambda}$

RED GIANT

Attenuation:

$$\tau_{\lambda}(\varphi) = \tau^{0}_{\lambda}(\varphi) + \tau^{+}_{\lambda}(\varphi)$$

$$\tau_{\lambda}^{0}(\varphi) = \sigma_{\text{Ray}}(\lambda)n_{\text{H}^{0}}(\varphi) + \kappa_{\text{H}^{-}}(\lambda)n_{\text{H}^{-}}(\varphi)$$
$$\tau_{\lambda}^{+}(\varphi) = \sigma_{\text{e}^{-}}^{+}n_{\text{e}^{-}}^{+}(\varphi) + \sigma_{\text{H}^{0}}^{+}(\lambda, \text{T}_{\text{e}})n_{\text{H}^{0}}^{+}(\varphi)$$
$$n_{\text{e}^{-}}^{+}(\varphi) = 1.2 n_{\text{H}^{+}}^{+}(\varphi)$$

- geometrical attenuation of nebular radiation modelled by a sine wave

- negtectable contribution in UV

Future plans

- to model the Ha-line profile for symbiotic system EG And

- the Hα-line profile shows variability with orbital motion
- available spectra from Stará Lesná Observatory and ARAS database
- our velocity profiles can be used to model the absorption component

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- indication of the wind focusing towards orbital plane

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- indication of the wind focusing towards orbital plane

- determination of the orbital inclination of symbiotic prototype Z And

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- indication of the wind focusing towards orbital plane
- determination of the orbital inclination of symbiotic prototype Z And
- justification of the origin of the UV continuum light curves asymmetry of SY Mus: LC asymmetry is caused by the asymmetric distribution of the wind from RG.

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- indication of the wind focusing towards orbital plane
- determination of the orbital inclination of symbiotic prototype Z And
- justification of the origin of the UV continuum light curves asymmetry of SY Mus: LC asymmetry is caused by the asymmetric distribution of the wind from RG.

 planned application of the wind model: to explain the variability of profile of the Hα-line of EG And along the orbital motion

- derivation of the wind velocity profiles of giants in EG And and SY Mus

- indication of the wind focusing towards orbital plane
- determination of the orbital inclination of symbiotic prototype Z And
- justification of the origin of the UV continuum light curves asymmetry of SY Mus: LC asymmetry is caused by the asymmetric distribution of the wind from RG.

 planned application of the wind model: to explain the variability of profile of the Hα-line of EG And along the orbital motion

Thank you for attention!