Accretion processes in symbiotic stars and related objects
First Chile-Korea-Gemini workshop on stellar astrophysics La Serena, 4-7 December 2016

Reclassifying symbiotic stars using the 2MASS and WISE catalogues:
 An Atlas of symbiotic star spectral energy distribution

Stavros Akras

National Observatory of Brasil

Lizette Guzman-Ramirez, Marcelo Leal-Ferreira, Gerardo Ramos-Larios

Symbiotic stars Catalogue

Allen D. A., (1984) $\rightarrow 104$ known and 15 candidate SySts
Kenyon S. J., (1986) $\rightarrow 133$ known and 20 candidate SySts
Belczynski+ (2000) $\rightarrow 188$ known and 30 candidate SySts

Symbiotic stars Catalogue

Allen D. A., (1984) $\rightarrow 104$ known and 15 candidate SySts
Kenyon S. J., (1986) $\rightarrow 133$ known and 20 candidate SySts
Belczynski+ (2000) $\rightarrow 188$ known and 30 candidate SySts
16 years
???
\rightarrow ??? known and ??? candidate SySts

Symbiotic stars Catalogue

Allen D. A., (1984) $\rightarrow 104$ known and 15 candidate SySts
Kenyon S. J., (1986) $\rightarrow 133$ known and 20 candidate SySts
Belczynski+ (2000) $\rightarrow 188$ known and 30 candidate SySts
16 years
???
\rightarrow ??? known and ??? candidate SySts
EuroConference on

La Palma, Canary Islands, Spain

An updated catalogue of SySts

Akras et al. in prep., 316 known and 82 candidate SySts

An updated catalogue of SySts

Akras et al. in prep., 316 known and 82 candidate SySts

Galactic SySts
252 known, 54 candidates (+1183)

An updated catalogue of SySts

Akras et al. in prep., 316 known and 82 candidate SySts

Galactic SySts
252 known, 54 candidates (+1183)

Extra-galactic SySts
64 known, 28 candidates

Corradi+ $(2008,2010,2011)$
 (5, -)

Miszalski+ $(2009,2013,2014)$
$(42,24)$
Luna+ 2013 (1, -)
Li+ 2015 (2,-)
Margon+ 2015 (1,-)
Mukai+ 2015 (1,-)

Baella+ $(2013,2016)$
(2, -)

An updated catalogue of SySts

~50\% more Galactic SySts

Akras et al. in mep., 316 known and 82 candidate SySts

Galactic SySts
252 known, 54 candidates (+1183)

Extra-galactic SySts
64 known, 28 candidates

Miszalski+ $(2009,2013,2014)$
$(42,24)$
Luna+ 2013 (1, -)
Li+ 2015 (2,-)
Margon+ 2015 (1,-)
Mukai+ 2015 (1,-)

Baella+ $(2013,2016)$
(2, -)

An updated catalogue of SySts

Akras et al. in prep., 316 known and 82 candidate SySts

An updated catalogue of SySts

~400\% more extragalactic SySts

Akras et al. in prep., 316 known and 82 candidate SySts

Galactic SySts
252 known, 54 candidates

Extra-galactic SySts
64 known, 28 candidates

SySts classification+SEDs

- S-type \rightarrow either a K or M spectral type giant
- D-type \rightarrow a Mira giant + dust shell
- D'-type \rightarrow G spectral type giant with far-infrared excess

Spectral energy distribution (SED)

- S-type \rightarrow the red star dominates the SED
: SED peaks at 1-2 mu
- D-type \rightarrow the dusty shell dominates the SED
: SED peaks at 5-15 mu
- D'-type \rightarrow resemble those of post-AGB/PNe
: SED peaks at 20-30 mu

SySts classification+SEDs

- S-type \rightarrow either a K or M spectral type giant
- D-type \rightarrow a Mira giant + dust shell
- D'-type \rightarrow G spectral type giant with far-infrared excess

Spectral energy distribution (SED)

- S-type \rightarrow the red star dominates the SED \quad SED peaks or 1-2 mu
- D-type \rightarrow the dusty shell dominates the SED : SED peaks at 5-15 mu
- D'-type \rightarrow resemble those of post-AGB/PNe : SED peaks at20-30 hu

The WISE survey with four IR bands at 3.4, 4.6, 11.2, $22.1 \mathrm{mu}+$ the 2MASS survey with three near-IR bands at 1.25, $1.65,2.16$ mu are ideal to construct and study the SED profile of SySts

S-type SEDs

D-type SEDs

D'-type SEDs

D'-type SEDs

D-type SEDs

S-type + infrared excess SEDs

Akras et al. in prep.

S-type + infrared excess SEDs

- Previous classification as D-type
$>$ Ha emission line profile is similar to S-type (Ivison+ 1994)
$>$ Webster \& Allen (1975) give a D and S classification

Akras et al. in prep.

Sanduleak's star

Tdust1=848 $\pm 71 \mathrm{~K}$
Tdust2=252 $\pm 22 \mathrm{~K}$

Tdust1=928 $\pm 73 \mathrm{~K}$
Tdust2=292 $\pm 28 \mathrm{~K}$

Tdust1=738さ-K
Tdust2=211さ-K
T_BB=3220 $\pm-K$

Akras et al. in prep.

SySts classification+SEDs

We have SEDs for 268 known and 68 candidate SySts

Spectral energy distribution (SED)

- S-type \rightarrow dominated by the SED of a red giant $:$ SED peaks at 0.8-1.6 mu
- D-type \rightarrow dominated by the SED of a dusty shell : SED peaks at $1.6-5 \mathrm{mu}$
- D'-type \rightarrow resemble those of post-AGB/PNe : SED

New classification

OVI Raman-scattered line

Name	$\begin{gathered} \hline \text { R.A. } \\ \text { J2000 } \end{gathered}$	$\begin{gathered} \hline \text { Dec. } \\ \text { J2000 } \end{gathered}$	$\begin{gathered} \hline \text { Old } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \hline \text { New } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathrm{T}_{B B} \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\text {fit }} \\ & (\mathrm{K}) \end{aligned}$	$\lambda_{\text {peak }}$ ($\mu \mathrm{m}$)	Raman line	Ref
$354.98-02.87^{10}$	174453.12	-34 4240.7	D	D	$1047 \pm 164_{349 \pm}^{644 \pm}$		2.77 ± 0.45	\checkmark	12
355.39-02.63 ${ }^{10}$	174455.68	-34 1418.9	S	S	2675 ± 84		1.08 ± 0.03	\checkmark	12
AS $241{ }^{1,2}$	174514.24	-38 1725.9	S	S+IR excess	$2303 \pm 124^{388} \pm 25$		1.26 ± 0.07	, ${ }^{\dagger}$	3
Hen 2-275 ${ }^{1,2}$	174530.74	-38 3945.8	S	S	2869 ± 131		1.01 ± 0.05	\checkmark	4
2MASSJ17463311-2419558 ${ }^{12}$	174633.12	-24 1955.7	S	S+IR excess	$2206 \pm 151^{301} \pm 17$		1.31 ± 0.08	x	13
$355.28-03.15^{10}$	174648.25	-34 3603.1	S	S	2568 ± 81		1.13 ± 0.03	x	12
V917 Sco ${ }^{1,2}$	174804.28	-36 0817.3	S	S	2740 ± 100		1.06 ± 0.04	\checkmark	3
PN H $1-36{ }^{1,2}$	174948.20	-37 0128.0	D	D	$1043 \pm$ - ${ }_{278}$		$2.78 \pm-$	$\checkmark,(x)$	1,(3,20)
JaSt2-6 ${ }^{10}$	175001.90	-29 3325.0	D	D	$840 \pm 19^{218}{ }^{16}$		3.45 ± 0.03		
RS Oph ${ }^{1,2}$	175013.20	-06 4228.5	S	S	2552 ± 94		1.14 ± 0.04	$x,(\boldsymbol{\sim})$	1,2,(3)
WRAY 16-312 ${ }^{1,2}$	175016.66	-30 5734.6	D	D	842 ± 60		3.44 ± 0.07	\checkmark	1,3

OVI Raman-scattered line

Name	$\begin{gathered} \hline \text { R.A. } \\ \text { J2000 } \end{gathered}$	$\begin{gathered} \hline \text { Dec. } \\ \mathrm{J} 2000 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Old } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { New } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathrm{T}_{B B} \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & \mathrm{T}_{f t t} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \lambda_{\text {peak }} \\ (\mu \mathrm{m}) \end{gathered}$	Raman line	Ref
354.98-02.87 ${ }^{10}$	174453.12	-34 4240.7	D	D	$1047 \pm 164_{349 \pm}^{644 \pm}$		2.77 ± 0.45	\checkmark	12
355.39-02.63 ${ }^{10}$	174455.68	-341418.9	S	S	$2675 \pm 84 \pm$		1.08 ± 0.03	\checkmark	12
AS 241 ${ }^{1,2}$	174514.24	-38 $17 \begin{aligned} & 25.9\end{aligned}$	S	S+IR excess	$2303 \pm 124^{388} \pm 25$		1.26 ± 0.07	∇^{\dagger}	3
Hen 2-275 ${ }^{1,2}$	174530.74	-38 3945.8	S	S	2869 ± 131		1.01 ± 0.05	\checkmark	4
2MASSJ17463311-2419558 ${ }^{12}$	174633.12	-24 1955.7	S	S+IR excess	$2206 \pm 151^{301} \pm 17$		1.31 ± 0.08	x	13
$355.28-03.15^{10}$	174648.25	-34 3603.1	S	S	2568 ± 81		1.13 ± 0.03	x	12
V917 Sco ${ }^{1,2}$	174804.28	-36 0817.3	S	S	2740 ± 100		1.06 ± 0.04	,	3
PN H $1-36{ }^{1,2}$	174948.20	-37 0128.0	D	D	$1043 \pm$-617 ${ }_{278}$ 土-		$2.78 \pm-$	$\checkmark,(X)$	1,(3,20)
JaSt2-6 ${ }^{10}$	175001.90	-29 3325.0	D	D	$840 \pm 19^{218}{ }^{218}$		3.45 ± 0.03		
RS Oph ${ }^{1,2}$	175013.20	-0642 28.5	S	S	2552 ± 94		1.14 ± 0.04	$\boldsymbol{x},(\boldsymbol{\sim})$	1,2,(3)
WRAY $16-312^{1,2}$	175016.66	-30 5734.6	D	D	842 ± 60		3.44 ± 0.07	\checkmark	1,3

55% of galactic SySts show the $6830 \AA$ Aine (119 out of 218). 37 SySts without available spectra.

OVI Raman-scattered line

Name	$\begin{gathered} \hline \text { R.A. } \\ \text { J2000 } \end{gathered}$	$\begin{gathered} \hline \text { Dec. } \\ \mathrm{J} 2000 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Old } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { New } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathrm{T}_{B B} \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & \mathrm{T}_{f t t} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \lambda_{\text {peak }} \\ (\mu \mathrm{m}) \end{gathered}$	Raman line	Ref
354.98-02.87 ${ }^{10}$	174453.12	-34 4240.7	D	D	$1047 \pm 164_{349 \pm}^{644 \pm}$		2.77 ± 0.45	\checkmark	12
355.39-02.63 ${ }^{10}$	174455.68	-341418.9	S	S	$2675 \pm 84 \pm$		1.08 ± 0.03	\checkmark	12
AS 241 ${ }^{1,2}$	174514.24	-38 $17 \begin{aligned} & 25.9\end{aligned}$	S	S+IR excess	$2303 \pm 124^{388} \pm 25$		1.26 ± 0.07	∇^{\dagger}	3
Hen 2-275 ${ }^{1,2}$	174530.74	-38 3945.8	S	S	2869 ± 131		1.01 ± 0.05	\checkmark	4
2MASSJ17463311-2419558 ${ }^{12}$	174633.12	-24 1955.7	S	S+IR excess	$2206 \pm 151^{301} \pm 17$		1.31 ± 0.08	x	13
$355.28-03.15^{10}$	174648.25	-34 3603.1	S	S	2568 ± 81		1.13 ± 0.03	x	12
V917 Sco ${ }^{1,2}$	174804.28	-36 0817.3	S	S	2740 ± 100		1.06 ± 0.04	,	3
PN H $1-36{ }^{1,2}$	174948.20	-37 0128.0	D	D	$1043 \pm$-617 ${ }_{278}$ 土-		$2.78 \pm-$	$\checkmark,(X)$	1,(3,20)
JaSt2-6 ${ }^{10}$	175001.90	-29 3325.0	D	D	$840 \pm 19^{218}{ }^{218}$		3.45 ± 0.03		
RS Oph ${ }^{1,2}$	175013.20	-0642 28.5	S	S	2552 ± 94		1.14 ± 0.04	$\boldsymbol{x},(\boldsymbol{\sim})$	1,2,(3)
WRAY $16-312^{1,2}$	175016.66	-30 5734.6	D	D	842 ± 60		3.44 ± 0.07	\checkmark	1,3

55\% of galactic SySts show the $6830 \AA$ line (119 out of 218). 37 SySts without available spectra.
$\geq 50 \%$ of galactic SySts show the $6830 \AA$ line (Allen 1980)

OVI Raman-scattered line

Name	$\begin{gathered} \hline \text { R.A. } \\ \text { J2000 } \end{gathered}$	$\begin{gathered} \hline \text { Dec. } \\ \mathrm{J} 2000 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Old } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { New } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathrm{T}_{B B} \\ (\mathrm{~K}) \end{gathered}$	$\begin{aligned} & \mathrm{T}_{f t t} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \lambda_{\text {peak }} \\ (\mu \mathrm{m}) \end{gathered}$	Raman line	Ref
354.98-02.87 ${ }^{10}$	174453.12	-34 4240.7	D	D	$1047 \pm 164_{349 \pm}^{644 \pm}$		2.77 ± 0.45	\checkmark	12
355.39-02.63 ${ }^{10}$	174455.68	-341418.9	S	S	$2675 \pm 84 \pm$		1.08 ± 0.03	\checkmark	12
AS 241 ${ }^{1,2}$	174514.24	-38 $17 \begin{aligned} & 25.9\end{aligned}$	S	S+IR excess	$2303 \pm 124^{388} \pm 25$		1.26 ± 0.07	∇^{\dagger}	3
Hen 2-275 ${ }^{1,2}$	174530.74	-38 3945.8	S	S	2869 ± 131		1.01 ± 0.05	\checkmark	4
2MASSJ17463311-2419558 ${ }^{12}$	174633.12	-24 1955.7	S	S+IR excess	$2206 \pm 151^{301} \pm 17$		1.31 ± 0.08	x	13
$355.28-03.15^{10}$	174648.25	-34 3603.1	S	S	2568 ± 81		1.13 ± 0.03	x	12
V917 Sco ${ }^{1,2}$	174804.28	-36 0817.3	S	S	2740 ± 100		1.06 ± 0.04	,	3
PN H $1-36{ }^{1,2}$	174948.20	-37 0128.0	D	D	$1043 \pm$-617 ${ }_{278}$ 土-		$2.78 \pm-$	$\checkmark,(X)$	1,(3,20)
JaSt2-6 ${ }^{10}$	175001.90	-29 3325.0	D	D	$840 \pm 19^{218}{ }^{218}$		3.45 ± 0.03		
RS Oph ${ }^{1,2}$	175013.20	-0642 28.5	S	S	2552 ± 94		1.14 ± 0.04	$\boldsymbol{x},(\boldsymbol{\sim})$	1,2,(3)
WRAY $16-312^{1,2}$	175016.66	-30 5734.6	D	D	842 ± 60		3.44 ± 0.07	\checkmark	1,3

55\% of galactic SySts show the $6830 \AA$ Aine (119 out of 218). 37 SySts without available spectra.
$\geq 50 \%$ of galactic SySts show the $6830 \AA$ line (Allen 1980)

In types

- 91 out of 158 S-type (57.6\%)
- 8 out of 21 S-type + infrared excess (38\%)
- 19 out of 35 D-type (54\%)
- 1 out of 4 D'-type (25\%)

OVI Raman-scattered line

$\geq 50 \%$ of galactic SySts show the $6830 \AA$ Aline (Allen 1980) 55% of galactic SySts show the $6830 \AA$ line (119 out of 218). 37 SySts without available spectra.

Extragalactic SySts

- SMC $\rightarrow 8$ out of 8 (100\%)
- LMC $\rightarrow 4$ out of 7 (57\%)
- M31 $\rightarrow 16$ out of 31 (52\%)
- M33 $\rightarrow 5$ out of 12 (41.7\%)
- Milky Way $\rightarrow 119$ out of 218 (55\%)
[Fe/H]=-0.99 (Dobbie+ 14)
[Fe/H]=-0.60 (Salaris \& Girardi 05)
[Fe/H]=-0.83 (Brown+ 08)
[Fe/H]=-1.6 (Cioni+ 09,13)
[Fe/H]=-0.11 (Sadler+ 96)

Thank you for your attention

